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Abstract. We consider the sine–Gordon equation under Hamiltonian perturbation with even
periodic boundary conditions. We give an analytic expression for homoclinic orbits and produce a
useful representation of the gradient of an important integral of motion. We establish the existence
of homoclinic tubes based on Mel’nikov analysis and an implicit function theorem argument.

1. Introduction

Nonlinear Hamiltonian partial differential equations (PDEs) are of extreme physical
importance since they describe processes without dissipation of energy. There is a class
of the above PDEs, known as ‘soliton equations’, including the sine–Gordon equation and
the cubic nonlinear Schrödinger equation [7], which admit very regular solutions (almost
periodic) in time, under spatially periodic boundary conditions. In these situations dissipative
perturbations of the soliton equations produce waves which are observed numerically to possess
chaotic behaviour [8]. Thus, near-integrable soliton equations provide natural conditions
for the mathematical study of chaotic behaviour in infinite-dimensional dynamical systems.
However, the study of near-integrable Hamiltonian PDEs is also important because of the
associated questions of the persistence of KAM tori and stochastic layers.

As an example, we consider the sine–Gordon equation with Hamiltonian perturbation. We
emphasize that the integrable sine–Gordon equation has an interesting phase-space structure
possessing exponentially unstable solutions with associated homoclinic orbits. Ercolani
et al [3] clarified the role of integrable instabilities with regard to both individual solutions
and the corresponding geometry of integrable level sets in the phase space of the sine–Gordon
equation. For neutrally stable solutions the level set is anN -torus, 06 N 6∞ and there are
generically incommensurate frequencies in the integrable flow for such data, which consists
of the quasiperiodic motion on anN -torus. For quasiperiodic flow on a finite-dimensional
unstable torus there are a finite number(k) of unstable modes. Associated with each instability
is a family of homoclinic orbits which asymptote, ast → ±∞, to the unstable quasiperiodic
solution. The associated level set in phase space is a whiskered torus which consists of a torus
component together withk-dimensional whiskers.

The present paper is devoted to studying the existence of homoclinic tubes asymptotic to
the above whiskered torus of the sine–Gordon equation with conservative-type perturbation.
Silnikov studied the structure of the neighbourhood of a homoclinic tube to an invariant
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torus [12]. He considered a diffeomorphism,T , in a region of finite-dimensional space such
that there exists an invariant saddle-type torus,τ . The stable and unstable manifolds ofτ
intersect transversely with a homoclinic torusτh. The existence of a countable collection of
homoclinic tori,τh,i = T i◦τh, i = 0,±1,±2, . . . is defined by the homoclinic tube ofτ . He
proved the existence of chaotic dynamics in the neighbourhood of the homoclinic tube, as
Smale did for the transversal homoclinic orbit.

We are interested in homoclinic tubes for this problem, since each invariant tube contains
non-ellipticKAM tori and a chaotic region. Recent works [2,6,13] on KAM theory for near-
integrable Hamiltonian PDEs have focused on the persistence ofelliptic tori. In the 1970s
persistence results for whiskered tori, were obtained and the so-called ‘partially hyperbolic
KAM theory’ due to Graff [4] for finite-dimensional Hamiltonian systems was proposed. Since
the original KAM theorem applies only in the regions of phase space foliated by tori and not
in regions of phase space containing whiskered tori, KAM theory had to be developed to study
the persistence of whiskered tori under perturbations. Moreover, the qualitative analysis of
Hamiltonian PDEs with whiskered tori is very complicated and here we expose the first part
of this analysis based on the persistence results of whiskered tori.

In [11], the sine–Gordon equation subjected to dissipative perturbations is studied. The
persistence of homoclinic orbits is established through a Mel’nikov method [9]. We proved the
existence of a codimension-four centre manifold,Mε, which contains the whiskered torus and
codimension-two centre-stable (unstable) manifoldsW s(Mε),W

u(Mε), respectively, such
thatMε = W s(Mε)∩W u(Mε). Let T be a submanifold in the intersection ofW s(Mε) and
W u(Mε), T ⊂Mε. We callHtube a transversal homoclinic tube asymptotic toMε under the
flow8t

ε (8t
ε denotes the evolution operator of the perturbed system) if the intersection between

W s(Mε) andW u(Mε) is transversal atT and

Htube=
⋃

t∈R8
t
ε◦T .

We give a coordinate expression for the submanifoldT and investigate this intersection through
the existence of simple zeros of the distance function betweenW s(Mε),W

u(Mε) and the
implicit function theorem argument.

We now describe the structure of this paper. In section 2, we formulate the problem. In
section 3, we briefly discuss the characteristic properties of the unperturbed system based on its
Lax pair formulation. We prove the expression of homoclinic orbits through Hirota’s method
and explicity compute the gradient of the Floquet discriminant evaluated on the homoclinic
orbits. Section 4 is devoted to the analysis of the locally invariant manifolds of the perturbed
system based on these coordinate expressions in the subset of phase space. In section 5,
we establish the existence of homoclinic tubes based on Mel’nikov analysis and the implicit
function theorem.

2. Problem set-up

We consider the following near-integrable infinite-dimensional Hamiltonian system

ut = J [∇H0(u) + ε∇H1(u, µ)] (2.1)

where
H = H0 + εH1

H0(u) =
∫ L

0

1
2(u

2
t + c2u2

x) + (1 + cosu) dx with 1
4 < c2 < 1.

(2.2)

u = (u, ut ), J is the symplectic 2× 2 matrix and∇f = ( δf
δu
,
δf

δut
), ε is the small perturbation

parameter,µ the external parameters of our problem,εH1 is the Hamiltonian perturbation and
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u(x, t) satisfies even periodic boundary conditions in the space variable. The phase or function
space is defined as follows:

H1 =
{
u = (u, ut ) : u(−x) = u(x) = u(x +L),

∫ L

0
|∂xu|2dx <∞

}
(2.3)

denotes the Sobolev space of functions ofx which areL-periodic, even and square integrable
with a square integrable first derivative on [0, L). One should supply the phase-spaceH1 with
the symplectic structure given by the 2-form�:

�(u, v) =
∫ L

0
(vtu− utv) dx ∀u, v ∈ H1. (2.4)

Let a domainP ⊂ H1 andP1 ⊂ P be such that for everyu0 ∈ P1 there exists a unique
solutionu(t) = 8t

ε(u0), t ∈ I of (2.1) with the initial conditionu0 = u(0). The set of the
mappings

8t
ε : P1 −→ P u0 −→ 8t

ε(u0) t ∈ I ⊂ R
is called the flow of equation (2.1). We refer to the HamiltonianH0 with ε = 0 as the
unperturbed Hamiltonian. The infinite-dimensional system generated by (2.2) is the integrable
sine–Gordon equation

utt − c2uxx − sinu = 0. (2.5)

We define the Poisson bracket as

{F,G} =
∫ L

0

(
δF

δu

δG

δut
− δF

δut

δG

δu

)
dx. (2.6)

Note that the evolution of any functionalF , under the sine–Gordon flow, is governed by

dF

dt
= {F,H }. (2.7)

In this paper, we consider the following Hamiltonian perturbation termH1:

H1(u) =
∫ L

0
(au + bV (u)) dx (2.8)

with V (u) =∑>1Vu
2+1 and equation (2.1) it can be rewritten as

utt − c2uxx − sinu = ε
(
a1 + a2

∂V

∂u
(u)

)
. (2.9)

We study the existence of homoclinic tubes to an invariant whiskered tori for equation (2.9),
in the phase-spaceH1.

3. Homoclinic orbits and the Floquet discriminant

The sine–Gordon equation under periodic boundary conditions and in the absence of
perturbations admits solutions for very special initial data which are homoclinic in time. In
this section we briefly discuss the homoclinic structure of the sine–Gordon equation in terms
of spectral theory, since this structure is represented by multiple eigenvalues of the associated
eigenvalue problem (Lax pair). We find an analytic expression for the homoclinic solutions
using Hirota’s bilinear form and present the gradient of the Floquet discriminant evaluated on
these homoclinic solutions for the computation of the Mel’nikov function.
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3.1. Lax pair formulation

An important aspect of the sine–Gordon equation (2.5), directly related to the integrability of
this system, is that it arises as the compatibility condition of the following Lax pair of the linear
operators:

L(x)(u, ζ )φ = 0 L(t)(u, ζ )φ = 0 (3.1)

where

L(x)(u, ζ ) = − icσ2
d

dx
+

i

4
(cux + ut )σ1− 1

16ζ
exp[ iuσ3] − ζ I

L(t)(u, ζ ) = − iσ2
d

dt
+

i

4
(cux + ut )σ1 +

1

16ζ
exp[ iuσ3] − ζ I

(3.2)

whereσi denote the Pauli matrices,I is the identity matrix,u = (u(x, t), ut (x, t)) the potential
andζ ∈ C denotes the spectral parameter.

Sinceu ∈ H1, we consider the first member of the Lax pair (3.1) as an eigenvalue problem
with the complex parameterζ serving the role of an eigenvalue. The spectrum ofL(x), denoted
by

σ(L(x)) := {ζ ∈ C : L(x)φ = 0, |φ| <∞, ∀x} (3.3)

characterizes the solution of the sine–Gordon equation, the potentialu also satisfies the sine–
Gordon equation and is of spatial periodL. Since the coefficients ofL(x) are periodic inx, this
Sturm–Liouville problem is a Floquet spectral problem. Asu(x, t) satisfies the sine–Gordon
equation, this Floquet spectrum is invariant int , a fact which provides a sufficient (countable)
number of constants of the motion, to make the equation completely integrable. In this case,
the generic level sets of these invariants will be anN -torus(06 N 6∞):

· · · × S1× · · · × S1× · · ·
and the solutions,u(x, t), will be almost periodic in time. We do not have the opportunity to
display the Floquet spectral theory of (3.1) here, see [1,3] and references therein. We briefly
describe theN -tori of the sine–Gordon equation.

Let us consider the fundamental matrixM(x, x0;u, ζ ) of L(x) as

L(x)(u, ζ )M = 0 M(x0, x0;u, ζ ) = I (3.4)

and the Floquet discriminant

1(u, ζ ) := TrM(x0 +L, x0;u, ζ ).
The spectrum ofL(x) is given by the following condition:

σ(L(x)) := {ζ ∈ C : 1(u, ζ ) ∈ R, |1(u, ζ )| 6 2}. (3.5)

The Floquet discriminant,1, is known to be analytic in both its arguments and is invariant
along solutions of the sine–Gordon equation. This means that1(u, ζ ) satisfies the following
Poisson bracket conditions:

{1(u, ζ ),1(u, ζ ′)} = 0 ∀ζ, ζ ′ ∈ C, {1(u, ζ ),H(u)} = 0 ∀ζ ∈ C.
There areN -phase solutions,φ(ϑ1, ϑ2, . . . , ϑN), of the Lax pair, with preciselyk (06 k 6 N)
simple periodic eigenvalues (the simple zeros of1 ± 2) in the open first quadrant of theζ -
plane and 2(N − k) simple periodic eigenvalues in the imaginary axis. The phase evolution is
determined byL(t) with the phases evolving linearly according to

ϑj = κjx + ωj t + ϑ(0)j κj = 2πj/L
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whereκj , ωj are determined uniquely by the simple spectrum ofL(x) and the phase parameters
ϑ
(0)
j ∈ [0, 2π) parametrize anN -torus. For a givenN -phase solution, the isospectral set

(all sine–Gordon solutions with this spectrum) contains anN -torus, theN -phase solutions
explicity parametrize the linear flow on the finite-dimensional tori of this completely integrable
Hamiltonian system. If the spectrum of anN -phase solution contains multiple periodic
eigenvalues (corresponding to multiple zeros of1 ± 2) off the real axis, then exponential
instabilities may be present. If these instabilities have a positive growth rate, they correspond
to orbits that are asymptotic to theN -phase torus. This corresponds to a whiskeredN -torus [8]
and the isospectral set includes the homoclinic solutions which approach the torus ast →±∞.

As an example let us compute the spectrum for the spatially and temporally uniform
solutionu = O = (0, 0). The Floquet discriminant is given by

1(u, ζ ) = 2 cos

[(
ζ +

1

16ζ

)
L

c

]
. (3.6)

The simple periodic spectrum is given by

ζ = 1

2

jcπ
L
±
√(

jcπ

L

)2

− 1

4

 j ∈ Z. (3.7)

Each of these points is a double point embedded in the continuous spectrum and becomes
complex if

06
(

2πjc

L

)2

6 1. (3.8)

Condition (3.8) is exactly the same as the condition for linearized instability and the complex
double point is given by

ζd = 1
4 exp[ iβ] with β = tan−1 L

2jπc

√
1−

(
2jcπ

L

)2

. (3.9)

3.2. Homoclinic orbits

Ercolani et al [3] proved that homoclinic solutions of the sine–Gordon equation can be
obtained by a decomposition of two Bäcklund transformations from the uniform solution
(0, 0). Here, we derive the homoclinic solutions following Hirota’s method, [5]. Let us
consider the unperturbed sine–Gordon equation in the form

utt − uxx + sinu = 0. (3.10)

We assume that the solution of (3.10) has the form

u(x, t) = 4 tan−1

[
g(x, t)

f (x, t)

]
(3.11)

whereg, f are smooth functions. Making use of the identity, tan−1X = 1
2i ln[ 1+iX

1− iX ], it follows
that:

u = −2i ln

[
1 + ig/f

1− ig/f

]
sinu = 4

f 4(1 + (g/f )2)2
fg(f 2 − g2).

(3.12)

Substituting (3.11) and (3.12) into (3.10) we obtain the following pair of equations:

(D2
x −D2

t )f · g = fg
(D2

x −D2
t )(f · f − g · g) = 0

(3.13)
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where

D2
xf · g = fxxg − 2fxgx + fgxx.

If we choose

f (x, t) = a cosh(px + γ ) g(x, t) = A cos(P t + 0) (3.14)

one obtains the breather solution

u(x, t) = 4 tan−1

[
A

a
cos(P t + 0) sech(px + γ )

]
(3.15)

where

p2 + P 2 = 1 a2p2 = A2P 2 γ, 0 ∈ R.
Using the symmetries

x −→ t t −→ xc u −→ π + u

solution (3.15) takes the form

u(x, t) = π + 4 tan−1

[
A

a
cos(P cx + 0) sech(pt + γ )

]
which satisfiesutt − c2uxx + sinu = 0 and translates the point(π, 0) at the origin, therefore,
we obtain the homoclinic breather solution of the sine–Gordon equation

U(x, t) = 4 tan−1(tanβ cos(xc cosβ) sech(t sinβ)) (3.16)

with β defined in (3.9) and

A

a
= tanβ P = cosβ 0 = γ = 0 p = sinβ.

Note thatU(x, t) approaches the uniform solution,u = (0, 0), exponentially ast →±∞:

U(x, t) = O[exp(−σ |t |)] as t −→ ±∞ σ :=
√

1− (2πc/L)2. (3.17)

3.3. The gradient of the Floquet discriminant

Let us consider the special solution of the unperturbed sine–Gordon equation,u = (0, 0). In
this case the solutions of system (3.1) are given by

f ±(x, t) = exp

[
± i

(
k(ζ )x

c
+ λ(ζ )t

)](
1
± i

)
(3.18)

wherek(ζ ) = ζ + 1
16ζ , λ(ζ ) = ζ − 1

16ζ . For these solutions the spectrum ofL(x) has a double

complex point atζd = ν = 1
4 exp[ iβ].

Let m(x, x ′, t, ζ,O) = [fij ] denote the fundamental matrix of (3.1) at(ζ,O), ψ the
general solution of Lax pair system andU(x, t) the homoclinic orbit. LetM(x, x ′, t, ζ, U)
denote the fundamental matrix of (3.1) at(ζ, U(x, t)). Then, forζ 2 6= ν2,M,m are related by

M(x, t, ζ, U) = G(x, t; ζ, ν)m(x, x ′, t, ζ,O)G−1(x, t; ζ, ν) (3.19)

where theG matrix is given by

G(x, t; ζ, ν) =
(−νψ1ψ

−1
2 ζ

−ζ νψ2ψ
−1
1

)
. (3.20)
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Using the fact that the homoclinic orbit (3.16) is generated fromO by a composition of two
Bäcklund transformations (atζ = ν andζ = −ν∗), cf [3]. It follows, after some manipulation,
that the fundamental matrixM evaluated onU is given by

M(x, t, ζ, U) =
(
M11 M12

M21 M22

)
(3.21)

where

M11 := i

2 sin 2β

[
(e−2iβf22− e2iβf11) +

(
f12

ψ2

ψ1
− f21

ψ1

ψ2

)]
M12 := − i

2 sin 2β

[
ψ2

ψ1
(f11− f22)− e2iβf12

(
ψ2

ψ1

)2

+ e−2iβf21

]

M21 := − i

2 sin 2β

[
ψ1

ψ2
(f11− f22) + e2iβf21

(
ψ1

ψ2

)2

− e−2iβf12

]
M22 := i

2 sin 2β

[
(e−2iβf11− e2iβf22)−

(
f12

ψ2

ψ1
− f21

ψ1

ψ2

)]
(3.22)

andψ1, ψ2 denotes any fixed solutions of the linear system (3.1). At this point we derive the
expressions of the gradient of the Floquet discriminant,1.

Lemma 3.1. The gradient of1 with respect tou, ut evaluated on the homoclinic solutionsU
is given by

δ1

δu
(U, ζd) = −cDx

[
δ1

δut
(U)

]
+

ie− iβ

4c
{(ML

12M
2
11 + (ML

22− 1)M11M12−M2
12)

× exp[ iU ] + (ML
21M

2
22−ML

12M
2
21 + (ML

11−ML
22)M21M22) exp[− iU ]}

δ1

δut
(U, ζd) = − i

4c

(
1

2 sin 2β

)2 [
E
ψ2

ψ1
+H

ψ1

ψ2

] (3.23)

whereML
ij = Mij (L),Mij = Mij (x) (cf (3.22)),F± = (2c)−1L cosβ ± β andE, H are

functions ofF±, x andt to be given in (3.33).

Proof. We rewrite the linear operatorL(x)(u, ζ ) (cf (3.2)) as follows:

L(x)(u, ζ ) := −cJDx +

(
A +

B2

ζ
− ζ

)
I (3.24)

where

J =
(

0 1
−1 0

)
A = i

4
(cux + ut )

(
0 1
1 0

)
and

B = i

4

(
eiu/2 0

0 e− iu/2

)
.

LetM be the fundamental matrix to the system

L(x)(u, ζ )M = 0 M(x = 0) = I (3.25)

evaluated on the homoclinic solutionU or equivalently

DxM = 1

c
J

(
ζ −

(
A +

B2

ζ

))
M.
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Variation ofu leads to the variational equation for the variation ofM at fixedζ :

DxδM = 1

c
J

(
ζ −

(
A +

B2

ζ

))
δM − J

c

(
δA +

2BδB

ζ

)
M

δM(x, ζ,u) = −1

c
M(x)

∫ x

0
M−1(y)J

[
i

4
[δut + cδux ]

(
0 1
1 0

)
− iδu

16ζ

(
eiu 0
0 −e− iu

)]
M(y)µ dy

δ1(L, ζ,u) = −1

c
Tr

[
M(L)

∫ L

0
M−1(y)J

[
i

4
[δut + cδux ]

(
0 1
1 0

)
− iδu

16ζ

(
eiu 0
0 −e− iu

)]
M(y) dy

]
.

An explicit calculation yields

δ1

δu
(u, ζ ) = i

4
Tr

[
M(L)Dx [M

−1(x)IM(x)] +
1

4cζ
M(L)M−1(x)EM(x)

]
(3.26a)

δ1

δut
(u, ζ ) = − i

4c
Tr[M(L)M−1(x)IM(x)] (3.26b)

where

I =
(

1 0
0 −1

)
E =

(
0 e− iu

eiu 0

)
.

Using the fact that the elements of the matrixM areL-periodic functions inx the expression
(3.26b) takes the form

δ1

δut
(U(x, t)) = − i

4c
Tr

[
M−1(x)

(
1 0
0 −1

)
M(x +L)

]
. (3.27)

An explicit representation ofM−1:

M−1(x, ζ, u) =
(
M22 −M12

−M21 M11

)
allows us to place (3.27) in the form

δ1

δut
(U(x, t)) = − i

4c
[(M22(x)M11(x +L)−M11(x)M22(x +L))

+ (M12(x)M21(x +L)−M21(x)M12(x +L))] . (3.28)

Substituting the representations (3.18) and (3.22) into (3.28) we find the expression

δ1

δut
= − i

4c

(
1

2 sin 2β

)2 [(
4 cos

(
kL

c
− 2β

)
− 2 cos

(
kL

c
+ 2β

)
− exp

[
i

(
kL

c
+ 2β

)])
ψ2

ψ1
+

(
2 cos

(
kL

c
− 2β

)
+ exp

[
− i

(
kL

c
− 2β

)])
ψ1

ψ2

]
(3.29)

whereψ = (ψ1, ψ2)
⊥ are the Bloch functions for the Lax pair of the sine–Gordon equation.

From (3.18) we have

ψ1 = 2 cos

(
kx

c
+ λt

)
ψ2 = −2 sin

(
kx

c
+ λt

)
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wherek, λ are evaluated on the double complex pointζd = 1
4eiβ ,

k(ζd) = 1

2
cosβ λ(ζd) = i

2
sinβ.

Thus,

ψ2

ψ1
= 1

A1
(− sinh 2t + i sin 2x)

ψ1

ψ2
= 1

A2
(sinh 2t + i sin 2x) (3.30)

where

x := cosβ

2c
x t := sinβ

2
t

and

A1 = 2g(cos2 x cosh2 t − sin2 x sinh2 t) A2 = 2(cos2 x sinh2 t − sin2 x cosh2 t). (3.31)

Inserting (3.30), (3.31) into (3.29) leads to

δ1

δut
(U, ζd) = − i

4c

(
1

2 sin 2β

)2 [
E
ψ2

ψ1
+H

ψ1

ψ2

]
(3.32)

where

E = 1

A1
[2(cosF+ − 2 cosF−) sinh 2t + sinF− sin 2x

+i(sinh 2t sinF+ − 2(cosF+ − 2 cosF−) sin 2x)]

H = 1

A2
[−(2 sinh 2t cosF− + sin 2x sin 2F−) + i(sinh 2t sinF− − 2 cosF− sin 2x)]

(3.33)

and

F± = cosβ

2c
L± β β = tan−1 L

2πc

√
1−

(
2cπ

L

)2

.

The periodicity of the fundamental matrixM allows us to rewrite the expression (3.26a) as
follows:

δ1

δu
(u, ζ ) = i

4
Tr

[
Dx [M

−1(x)IM(x +L)] +
1

4cζ
M(L)M−1(x)EM(x)

]
. (3.34)

Using (3.26b), we obtain an analytic expression forδ1
δu
(U, ζd):

δ1

δu
(U, ζd) = −cDx

[
δ1

δut
(U)

]
+

ie− iβ

4c
{(ML

12M
2
11 + (ML

22− 1)M11M12−M2
12) exp[ iU ]

+(ML
21M

2
22−ML

12M
2
21 + (ML

11−ML
22)M21M22) exp[− iU ]} (3.35)

where

exp[ iU ] = 1 + i tanβ cos(xc cosβ) sech(t sinβ)

1− i tanβ cos(xc cosβ) sech(t sinβ)

andML
ij = Mij (L),Mij = Mij (x) (cf (3.22)). �
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4. Invariant manifolds

Before addressing the existence of the homoclinic tube in section 5, here we discuss the
coordinates of locally invariant manifolds of the perturbed system (2.9).

There exists a two-dimensional subspaceX̃
X̃ = {u ∈ H1 : ux = 0}

such that the set5 = X̃ ∩H1 is invariant under the flow of the perturbed system. The manifold
5 is real symplectic with a nondegenerate 2-form,�5, which arises from the restriction of
the symplectic structure to5. For ε = 0, the system (2.5) restricted to5 becomes a one
degree-of-freedom completely integrable Hamiltonian system, pendulum system, for which
we know the dynamics. Furthermore, the uniform solutionO = (0, 0) is a saddle for the
reduced pendulum system which lies on the whiskered torus for the full system. On the space
H1 this uniform solution becomes a singular point of the saddle-focus type.

The linearized system of the perturbed sine–Gordon equation in the neighbourhood of the
solutionO = (0, 0) takes the following form:

ytt − c2yxx − y = h(y) (4.1)

with h(y) := εg(y) + siny − y = O(y3) andg(u) = a1 + a2∂uV (u).

Remark 4.1. We obtain the same equation on linearizing the sine–Gordon equation (2.9) near
to the homoclinic orbitU(x, t),

ytt − c2yxx − y +K(x, t, ε; t0)y = εF (x, t, t0) +G(x, t, y, ε; t0) (4.2)

with

K = 1− cosU = O(exp[−2σ |t |])
F = g(U) = O(exp[−σ |t |]) σ :=

√
1− (2πc/L)2

G = ε[g(U + y)− g(U)] + sinU(cosy − 1) + cosU(siny − y)
= O(exp[−σ |t |]y2) +O(y3)

whence ast →±∞ equation (4.2) leads to (4.1), sinceU(x, t)→ 0.

Letting ε = 0, (4.1) becomes

ytt − c2yxx − y = 0 1
4 < c2 < 1. (4.3)

Substituting y= ŷ(t) coskjx with kj = 2πj/L andj an arbitrary integer, we obtain from
(4.3):

ŷ
′′ − (1− c2k2

j )ŷ = 0.

This shows that thej th mode grows exponentially ifc2(2πj/L)2 < 1, j = 0, 1. Now using
the even periodic boundary condition we see that our problem has two unstable directions, the
zeroth mode in the plane5 and forj = 1 off the subspace5, for the uniform solution(0, 0)
which lies on the circleu = θeiβ . If c2(2πj/L)2 > 1, we find an infinite number of centre
directions with frequenciesωj =

√
c2(2πj/L)2 − 1, j = 2, 3, . . . .

We consider a regionV of the phase-spaceH1 as follows:

V =
{
u ∈ H1 : u = eiβ

(
θ +

1∑
j=0

(rsj + ruj ) coskjx +
∞∑
j=2

rcj coskjx

)
β ∈ (−π/2, π/2), θ ∈ [0, 2π ], rsj , ruj , rcj ∈ R

}
. (4.4)
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In the new variables(rs, ru, rc) the linear centre, centre-stable and centre-unstable manifolds
have the following forms:

Mlin = {u ∈ V : rs = ru = 0}
W s(Mlin) = {u ∈ V : ru = 0}
W u(Mlin) = {u ∈ V : rs = 0}.

As we show in [11], the above representation of the linear manifolds perturb into smooth
invariant submanifolds, which forε 6 ε0 are locally the graphs of the functions from the
subsetY intoH1× P with

Y = {(θ, β, rs, ru, rc) ∈ H1 : |rs| < δs, |ru| < δu, ‖rc‖
< δcβ ∈ (−π/2, π/2), δθ < θ < 2π − δθ } (4.5)

whereδθ , δs, δu, δc are fixed positive constants and the external parameter spaceP :

P = {µ = (c, a, b) : 1
4 < c2 < 1, a1 ∈ (0, a0), a2 ∈ (0, b0), a0, b0 ∈ R}. (4.6)

The perturbed sine–Gordon equation is written in the new variable as follows [11]:

ru,t = λεuru + Pu(r, δ; ε)
rs,t = −λεsrs + Ps(r, δ; ε)
rc,t = Arc + Pc(r, δ; ε)

(4.7)

with λεu, λ
ε
s ∈ R, Pu, Ps, Pc the nonlinear functions,δ is the localization parameter and the

operatorA has imaginary eigenvalues. The expressions of the codimension-two locally centre-
stable and centre-unstable manifolds are given by:

W s
loc(Mε) = {r ∈ Y : ru = hu(θ, β, rs, rc; ε, µ)} (4.8a)

W u
loc(Mε) = {r ∈ Y : rs = hs(θ, β, ru, rc; ε, µ)} (4.8b)

wherehu = (hu
0, h

u
1), h

s = (hs
0, h

s
1) areCn smooth functions withn > n0. As we proved

in [11], the expression of the codimension-four centre manifoldMε is given by

Mε = {r ∈ Y : ru = hcu(θ, β, rc; ε, µ), rs = hcs(θ, β, rc; ε, µ)} (4.9)

with hcu = (hcu
0 , h

cu
1 ), h

cs= (hcs
0 , h

cs
1 ) C

n smooth functions andMε = W s
loc(Mε)∩W u

loc(Mε)

and then

hcu(θ, β, rc; ε, µ) = hu(θ, β, hcs(θ, β, rc; ε, µ), rc; ε, µ)
hcs(θ, β, rc; ε, µ) = hs(θ, β, hcu(θ, β, rc; ε, µ), rc; ε, µ).

(4.10)

5. Existence of the transversal homoclinic tube

In this section, we prove the existence of the transversal homoclinic tube of the perturbed sine–
Gordon equation (2.9). The key principle which we use is to consider the smooth representation
of invariant manifolds, a Mel’nikov argument and the implicit function theorem. Let us
consider a neighbourhoodU of the open subsetY :

U = {(θ, β, rs, ru, rc) ∈ Y : |rs,u| < δ0, ‖rc‖ < δ1 < δc, β ∈ (−π/2, π/2)
δθ < θ < 2π − δθ } (5.1)

and its stable and unstable boundary as follows:

∂Us = {(θ, β, rs, ru, rc) ∈ U : |rs| = δ0}
∂Uu = {(θ, β, rs, ru, rc) ∈ U : |ru| = δ0}.

(5.2)



6420 V M Rothos

For any fixedt∗, t∗ > 0,8t∗
ε ◦W u

loc(Mε) intersects the stable boundary ofU , ∂Us, at the point
with the following coordinates:

ru = hu
t∗(θ, β, rs, rc; ε, µ)

wherehu
τ ∈ Cn for n > n0. Since the unperturbed system admits homoclinic solutions in time,

W s(M0) ≡ W u(M0), this means that

[8t∗◦W u
loc(M0)] ∩ ∂Us = [8t∗◦W s

loc(M0)] ∩ ∂Uu

we have

hu
t∗(θ, β, rs, rc; 0, µ) = hs(θ, β, rs, rc; 0, µ).

We define the distance function between the above points in the perturbed case as

D(θ0, β0, rc,0; ε, µ) = hu
t∗(rs; θ0, β0, rc,0; ε, µ)− hs(rc; θ0, β0, rc,0; ε, µ). (5.3)

Following the method described in [11], we express the above function through the Mel’nikov
function as follows:

D(θ0, β0, rc,0, δ0; ε, µ) = εM(θ0, β0;µ) + O(ε2). (5.4)

Now define theCn−2 functiond:

d(θ0, β0, rc,0, δ0; ε, µ) := 1

ε
D(θ0, β0, rc,0, δ0; ε, µ) = M(θ0, β0;µ) + O(ε). (5.5)

The Mel’nikov function is given by

M(θ0, β0;µ) =
∫ ∞
−∞
〈∇1(U(x, t)),G(U(x, t))〉dt (5.6)

evaluated on the homoclinic orbitU(x, t), G = (0, a1 + a2∂uV(u))> and〈a, b〉 = ∫ L0 ab dx.
In our case, when the Mel’nikov function is built withH0

M1(θ0, β0;µ) =
∫ ∞
−∞
{H0, H1}(U(x, t))dt

is identically zero, because from equation (2.7) we have

M1 = −ε−1
∫ ∞
−∞

dH

dt
(U(t))dt = −ε−1

[
H
(

lim
t→∞U(t)

)
−H

(
lim
t→−∞U(t)

)]
= 0. (5.7)

One can dispute thatH0 is the proper invariant to measure the distance between the manifolds
W s(Mε) andW u(Mε), sinceW u(Mε) associated with the unstable mode (forj = 1, cf
section 4) is also a level set of the Floquet discriminant1.

The Mel’nikov function,M, is built with the Floquet discriminant and direct calculation
shows thatδ1

δut
is a combination of the gradient ofH0 andI whereI = ∫ L0 utux dx is another

invariant of the sine–Gordon equation, which does not imply thatM is identically zero. When
the Mel’nikov function is identically zero, a second-order Mel’nikov calculation is needed to
measure the splitting distance betweenW s(Mε) andW u(Mε), [10].

We can rewrite the Mel’nikov functionM as:

M(θ0, β0;µ) =
∫ ∞
−∞

∫ L

0

δ1

δut
(U(x, t))

[
a1 + a2

∂V

∂u
(U(x, t))

]
dx dt (5.8)

where the expression forδ1
δut

is given in (3.32). The Mel’nikov integral is convergent. Because
the Hamiltonian perturbationH1 is an exponentially decreasing expression evaluated on the
homoclinic solutionU(x, t), satisfying condition (3.17), from (3.32) we obtain∣∣∣∣ δ1δut

∣∣∣∣ 6 Ceσ t C > 0.
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SettingM = 0 in (5.8), we obtain an algebraic equation for the parameters

a1− a2σ̃ = 0 (5.9)

where

σ̃ = σ̃ (θ, β) = −
{∫ ∞
−∞

∫ L

0

δ1

δut
(U)

∂V

∂u
(U) dx dt

(∫ ∞
−∞

∫ L

0

δ1

δut
(U)dxdt

)−1}
.

We denote the surface defined by (5.9) byEβ :

Eβ : β0 = B(θ0; c).
We state the main result in the following theorem.

Theorem 5.1.There exist a region̂R = (0, 2π)×P for the parameters and a positive constant
ε0 > 0, such that for any|ε| < ε0 and(θ, µ) ∈ R̂, there exists a codimension-four transversal
homoclinic tube in the open setY of phase-spaceH1 asymptotic to the codimension-four centre
manifoldMε.

Proof. There exists a regionR of the surfaceEβ such that

∂M

∂β0
(β0, θ0;µ) 6= 0

and|∂M/∂β0| < l, l > 0
For anyp̂0 = (θ̂0, β̂0, µ̂0) ∈ R

∂

∂β0
d(θ̂0, β̂0, 0; 0, µ̂0) = ∂

∂β0
M(θ̂0, β̂0, 0; 0, µ̂0) 6= 0 (5.10)

and ∣∣∣∣∂M∂β0
(p̂0)

∣∣∣∣ < l.

By the implicit function theorem there is a neighbourhoodR̂ of (θ̂0, µ̂0) and a uniqueCn−2

function

β0 = B̂(θ0, rc,0; ε, µ)
defined inR̂ such that

B̂(θ0, 0; 0, µ) = β̂0

and

d(θ0, B̂(θ0, rc,0; ε, µ), rc,0; ε, µ) = 0.

Sinced is aCn−2 smooth function by (5.10), we obtain

∂

∂β0
d(θ0, B̂(θ0, rc,0; ε, µ), rc,0; ε, µ) 6= 0

and ∣∣∣∣ ∂d

∂β0

∣∣∣∣ < m, m > 0 for (θ0, rc,0; ε, µ) ∈ R̂.

Then,W s
loc(Mε) andW u

loc(Mε) intersect transversely at the neighbourhoodR̂. Let

V =
⋃

p̂0∈RR̂
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then there exists a uniqueCn−2(V,R) function

β0 = B(θ0, rc,0; ε, µ) (5.11)

in such a way

B(θ0, 0; 0, µ) = B0(θ0;µ)
andd(θ0, B̂(θ0, rc,0; ε, µ), rc,0; ε, µ) = 0.

Relation (5.11) defines a codimension-one submanifoldM̂ε of Mε. The coordinate
expression of the transversal intersectionT codimension-four ofW s(Mε) andW u(Mε) is
given by

ru = hcu(θ0,B(θ0, rc,0; ε, µ), rc,0; ε, µ)
rs = hcs(θ0,B(θ0, rc,0; ε, µ), rc,0; ε, µ)
β0 = B(θ0, rc,0; ε, µ)

(5.12)

wherehcu = (hcu
0 , h

cu
1 ), h

cs= (hcs
0 , h

cs
1 ). Define the homoclinic tubeHtube as follows:

Htube=
⋃

t∈R8
t
ε◦T . (5.13)

ThenHtube is the codimension-four transversal homoclinic tube asymptotic toT ⊂Mε. �

6. Conclusions

We have shown the existence of homoclinic tubes for the near-integrable infinite-dimensional
Hamiltonian system. The sine–Gordon equation which we chose to study is a nontrivial
integrable equation and admits homoclinic solutions in time. We found an analytic expression
for these solutions using Hirota’s method. We investigated the existence of homoclinic tubes
through the Mel’nikov analysis and an argument of the implicit function theorem. Since the
system under study is a near-integrable Hamiltonian PDE we are also interested in studying
the non-elliptic KAM tori and chaotic dynamics inside the homoclinic tube.
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