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Abstract. We consider the sine—Gordon equation under Hamiltonian perturbation with even
periodic boundary conditions. We give an analytic expression for homoclinic orbits and produce a
useful representation of the gradient of an important integral of motion. We establish the existence
of homoclinic tubes based on Mel'nikov analysis and an implicit function theorem argument.

1. Introduction

Nonlinear Hamiltonian partial differential equations (PDEs) are of extreme physical
importance since they describe processes without dissipation of energy. There is a class
of the above PDEs, known as ‘soliton equations’, including the sine—Gordon equation and
the cubic nonlinear Schdinger equation [7], which admit very regular solutions (almost
periodic) in time, under spatially periodic boundary conditions. In these situations dissipative
perturbations of the soliton equations produce waves which are observed numerically to possess
chaotic behaviour [8]. Thus, near-integrable soliton equations provide natural conditions
for the mathematical study of chaotic behaviour in infinite-dimensional dynamical systems.
However, the study of near-integrable Hamiltonian PDEs is also important because of the
associated questions of the persistence of KAM tori and stochastic layers.

As an example, we consider the sine—Gordon equation with Hamiltonian perturbation. We
emphasize that the integrable sine—Gordon equation has an interesting phase-space structure
possessing exponentially unstable solutions with associated homoclinic orbits. Ercolani
et al [3] clarified the role of integrable instabilities with regard to both individual solutions
and the corresponding geometry of integrable level sets in the phase space of the sine—Gordon
equation. For neutrally stable solutions the level set izaorus, 0< N < oo and there are
generically incommensurate frequencies in the integrable flow for such data, which consists
of the quasiperiodic motion on aNM-torus. For quasiperiodic flow on a finite-dimensional
unstable torus there are a finite numberof unstable modes. Associated with each instability
is a family of homoclinic orbits which asymptote, as> +oo, to the unstable quasiperiodic
solution. The associated level set in phase space is a whiskered torus which consists of a torus
component together with-dimensional whiskers.

The present paper is devoted to studying the existence of homoclinic tubes asymptotic to
the above whiskered torus of the sine—Gordon equation with conservative-type perturbation.
Silnikov studied the structure of the neighbourhood of a homoclinic tube to an invariant
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torus [12]. He considered a diffeomorphisi, in a region of finite-dimensional space such
that there exists an invariant saddle-type torus,The stable and unstable manifolds of
intersect transversely with a homoclinic tortjs The existence of a countable collection of
homoclinic tori,z;,; = T'ot;,, i = 0,41, 42, ... is defined by the homoclinic tube of He
proved the existence of chaotic dynamics in the neighbourhood of the homoclinic tube, as
Smale did for the transversal homaoclinic orbit.

We are interested in homaoclinic tubes for this problem, since each invariant tube contains
non-ellipticKAM tori and a chaotic region. Recent works [2,6,13] on KAM theory for near-
integrable Hamiltonian PDEs have focused on the persistene#igtic tori. In the 1970s
persistence results for whiskered tori, were obtained and the so-called ‘partially hyperbolic
KAM theory’ due to Graff [4] for finite-dimensional Hamiltonian systems was proposed. Since
the original KAM theorem applies only in the regions of phase space foliated by tori and not
in regions of phase space containing whiskered tori, KAM theory had to be developed to study
the persistence of whiskered tori under perturbations. Moreover, the qualitative analysis of
Hamiltonian PDEs with whiskered tori is very complicated and here we expose the first part
of this analysis based on the persistence results of whiskered tori.

In [11], the sine—Gordon equation subjected to dissipative perturbations is studied. The
persistence of homoclinic orbits is established through a Mel’nikov method [9]. We proved the
existence of a codimension-four centre manifald, , which contains the whiskered torus and
codimension-two centre-stable (unstable) manifddg M, ), WY(M,), respectively, such
that M, = WS(M )NWY(M,). Let T be a submanifold in the intersection ¥(M,) and
WY (M,), TCM,. We call Hype a transversal homoclinic tube asymptoticte, under the
flow @ (& denotes the evolution operator of the perturbed system) if the intersection between
WS(M,) andWY(M,) is transversal af and

Hipe = UteRq)éoT.
We give a coordinate expression for the submanifolthd investigate this intersection through
the existence of simple zeros of the distance function betwWwégm1,), W!(M,) and the
implicit function theorem argument.

We now describe the structure of this paper. In section 2, we formulate the problem. In
section 3, we briefly discuss the characteristic properties of the unperturbed system based on its
Lax pair formulation. We prove the expression of homoclinic orbits through Hirota’s method
and explicity compute the gradient of the Floquet discriminant evaluated on the homoclinic
orbits. Section 4 is devoted to the analysis of the locally invariant manifolds of the perturbed
system based on these coordinate expressions in the subset of phase space. In section 5,
we establish the existence of homoclinic tubes based on Mel'nikov analysis and the implicit
function theorem.

2. Problem set-up

We consider the following near-integrable infinite-dimensional Hamiltonian system

u; = J[VHo(u) + eV Hi(u, w)] (2.1)
where
H = Hy+¢e¢H;
ool 20 . 1 2 (2.2)
Hp(u) = /0 s(uy +cup) + (1 +cosu) dx with 7 <c¢“ <1

w = (u,u,), J is the symplectic Z 2 matrix andv f = (2, 3 ¢ is the small perturbation

Su’ Su;

parametery the external parameters of our problem; is the Hamiltonian perturbation and
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u(x, t) satisfies even periodic boundary conditions in the space variable. The phase or function
space is defined as follows:

L
H! = {u = (u,u) u(—x) =ukx) =ulx+1L), / [0, ul?dx < oo} (2.3)
0

denotes the Sobolev space of functions @fhich areL-periodic, even and square integrable
with a square integrable first derivative on J§). One should supply the phase-sp&iewith
the symplectic structure given by the 2-fofm

L
Q(u,v) = / (v;u — uyv) dx Yu, v € H. (2.4)
0

Let a domairn® ¢ H* andP; C P be such that for every, € P, there exists a unique
solutionu(t) = ®.(uop), ¢t € I of (2.1) with the initial conditionug = «(0). The set of the
mappings

CDZ:P1—>'P UQ—>CDIE(’UJQ) tel CR

is called the flow of equation (2.1). We refer to the Hamiltonidg with ¢ = 0 as the
unperturbed Hamiltonian. The infinite-dimensional system generated by (2.2) is the integrable
sine—Gordon equation

Uy — gy — Sinu = 0. (2.5)

We define the Poisson bracket as
L (8F8G §F 8G

F,G} = —— — —— | dx. 2.6

{ } /0 <8u8u, Su, 814) * (2:6)
Note that the evolution of any functional, under the sine—Gordon flow, is governed by

dr

— ={F, H). 2.7

5 = \F-H} 2.7)

In this paper, we consider the following Hamiltonian perturbation t&km

L
Hi(u) = / (au +bV (u)) dx (2.8)
0

with V(u) = Zplvjuzﬁl and equation (2.1) it can be rewritten as

. oV
Uy — Puy, —Sinu=c¢ <a1 +a28—(u)> . (2.9)
u

We study the existence of homoclinic tubes to an invariant whiskered tori for equation (2.9),
in the phase-spadé’.

3. Homoclinic orbits and the Floquet discriminant

The sine—Gordon equation under periodic boundary conditions and in the absence of
perturbations admits solutions for very special initial data which are homaoclinic in time. In
this section we briefly discuss the homoclinic structure of the sine—Gordon equation in terms
of spectral theory, since this structure is represented by multiple eigenvalues of the associated
eigenvalue problem (Lax pair). We find an analytic expression for the homoclinic solutions
using Hirota’s bilinear form and present the gradient of the Floquet discriminant evaluated on
these homoclinic solutions for the computation of the Mel'nikov function.
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3.1. Lax pair formulation

An important aspect of the sine—Gordon equation (2.5), directly related to the integrability of
this system, is that it arises as the compatibility condition of the following Lax pair of the linear
operators:

LY (u, )¢ =0 LY(u, )¢ =0 (3.1)
where

L, ) = —icazi + i(cu +u)op — iexp[iucfg,] -l
’ dx 4 16¢

LO(u,7) = —io d + l(cu +u)op + iexp[iua ] —¢lI
s 2dt 4 X t)01 16@' 3
whereo; denote the Pauli matricekis the identity matrixu = (u(x, ), u,(x, t)) the potential
and¢ € C denotes the spectral parameter.

Sinceu € H, we consider the first member of the Lax pair (3.1) as an eigenvalue problem
with the complex parametérserving the role of an eigenvalue. The spectrurh®f, denoted

by

(3.2)

O‘(L(x)) ={ceC: L(x)(f) =0, |¢| < o0, Vx} (3.3)

characterizes the solution of the sine—Gordon equation, the poteratiab satisfies the sine—
Gordon equation and is of spatial peribd Since the coefficients df™ are periodic inx, this
Sturm-Liouville problem is a Floquet spectral problem.As, r) satisfies the sine-Gordon
equation, this Floguet spectrum is invariant jia fact which provides a sufficient (countable)
number of constants of the motion, to make the equation completely integrable. In this case,
the generic level sets of these invariants will beNaorus (0 < N < o0):

ceox St x oo xSt x .

and the solutions;(x, t), will be almost periodic in time. We do not have the opportunity to
display the Floquet spectral theory of (3.1) here, see [1, 3] and references therein. We briefly
describe theV-tori of the sine—Gordon equation.

Let us consider the fundamental math&(x, xo; u, ¢) of LY as

LY (u, )M =0 M (xg, x0;u, &) = 1 (3.4)
and the Floquet discriminant

A(u, &) :=TrM(xo+ L, x0; u, ¢).
The spectrum oL ™ is given by the following condition:

o(LY) = {¢ € C: Aw, ) € R, |Aw, §)| < 2). (3.5)

The Floquet discriminanty, is known to be analytic in both its arguments and is invariant
along solutions of the sine—Gordon equation. This meansithat ¢) satisfies the following
Poisson bracket conditions:

{A(u, $), A(u, )} =0 Ve, ¢ eC, {A(u,§), H(w)} =0 v¢eC.

There areéV-phase solutiong (¢4, 92, . . ., ¥y), of the Lax pair, with precisely (0 < k < N)
simple periodic eigenvalues (the simple zeros\ot 2) in the open first quadrant of the
plane and 2N — k) simple periodic eigenvalues in the imaginary axis. The phase evolution is
determined by with the phases evolving linearly according to

ﬁj:KjX"'a)jt"'ﬁj(-o) Kj=27Tj/L
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wherex;, ; are determined uniquely by the simple spectrurh &f and the phase parameters
19/(.0) € [0, 2r) parametrize arN-torus. For a givenV-phase solution, the isospectral set
(all sine—Gordon solutions with this spectrum) containshatorus, theN-phase solutions
explicity parametrize the linear flow on the finite-dimensional tori of this completely integrable
Hamiltonian system. If the spectrum of aw-phase solution contains multiple periodic
eigenvalues (corresponding to multiple zerosfoft 2) off the real axis, then exponential
instabilities may be present. If these instabilities have a positive growth rate, they correspond
to orbits that are asymptotic to th&phase torus. This corresponds to a whiskevetbrus [8]
and the isospectral set includes the homoclinic solutions which approach the torus-asc.

As an example let us compute the spectrum for the spatially and temporally uniform
solutionu = O = (0, 0). The Floquet discriminant is given by

A, f) = 2003[(;“ + %) %} . (3.6)

The simple periodic spectrum is given by

_Lfdemy [(iemY 1 ez 3.7)
=2l L 4 S '

Each of these points is a double point embedded in the continuous spectrum and becomes
complex if

2njc 2
0< <1l (3.8)
L
Condition (3.8) is exactly the same as the condition for linearized instability and the complex
double point is given by
1 . . 1 2jC7T 2
¢a = 7 explip] with g =tan - 1- . (3.9
jme L

3.2. Homoclinic orbits

Ercolaniet al [3] proved that homoclinic solutions of the sine—Gordon equation can be
obtained by a decomposition of twoaBklund transformations from the uniform solution
(0,0). Here, we derive the homoclinic solutions following Hirota’s method, [5]. Let us
consider the unperturbed sine—Gordon equation in the form

Uy — Uy, +Sinu =0, (3.10)
We assume that the solution of (3.10) has the form
g 8Cx, 1)
u(x,t) = 4tant [ } 3.11
Sfx, 1) ( )
whereg, f are smooth functions. Making use of the identity, thi = % In[llj:’;], it follows
that:
b
u=—2iln [M}
118t (3.12)
sinu=—————— fe(f?—g?.
Fiar e’V

Substituting (3.11) and (3.12) into (3.10) we obtain the following pair of equations:
(Di=D))f-8=fg

3.13
(D2 D)(f-f—g-8) =0 (3.13)
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where

Dif -8 = furg — 2fi8: + [&ur.
If we choose

f(x,t) =acoshpx +y) g(x,t) = Acog Pt +T) (3.14)
one obtains the breather solution

u(x,r) =4tan?t [é cog Pr + ') sechipx + y)] (3.15)
a

where

p2+pPi=1 a’p? = A?P? y,I' e R.
Using the symmetries

X —>1t r —> xc u—mtu

solution (3.15) takes the form
A
u(x,t) =mx +4tan | —cogPcx +I')sechpr +y)
a

which satisfies:,, — c?u,, + sinu = 0 and translates the poitt, 0) at the origin, therefore,
we obtain the homoclinic breather solution of the sine—Gordon equation
U(x, 1) = 4tan (tanp cogxc cosp) sechs sinB)) (3.16)

with 8 defined in (3.9) and
é=tan,8 P = cosp r=y=0 p =sing.
a

Note thatU (x, ) approaches the uniform solutioa,= (0, 0), exponentially ag — +oo:

U(x,1) = Olexp(—alt])] as t —> +oo o :=+1—(2rc/L)2. (3.17)

3.3. The gradient of the Floquet discriminant

Let us consider the special solution of the unperturbed sine—Gordon equatiof), 0). In
this case the solutions of system (3.1) are given by

fEx, ) = exp|::ti (k(‘“)x +,\(;);)} (il) (3.18)

c

wherek(z) = ¢ + %, Ao =¢ — %. For these solutions the spectrumidf’ has a double
complex point at, = v =  exp[iB].

Let m(x,x',t,¢, O) = [fi;] denote the fundamental matrix of (3.1) @t, 0), ¥ the
general solution of Lax pair system abtlx, r) the homoclinic orbit. LetM (x, x', ¢, ¢, U)
denote the fundamental matrix of (3.1Xat U (x, t)). Then, forc? # v2, M, m are related by

Mx,t,0,U)=G(x,t; ¢, v)m(x, x', 1, ¢, )G x, 1: ¢, v) (3.19)

where theG matrix is given by

_ -1
G(x,t;{,v)=< vg% vwzibll)' (3.20)
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Using the fact that the homoclinic orbit (3.16) is generated fi@rhy a composition of two
Backlund transformations (at= v and¢ = —v*), cf[3]. It follows, after some manipulation,
that the fundamental matrid evaluated or/ is given by

M) = (G ) (@.21)
where
My = > SI:] 23 =(e—2iﬁf22 - eziﬂfll) + <f12% — f21%):|
Myz = Ti E(}”11 — fo) — 8 11, <ﬁ>2 +e 2 £
2sin28 | ¢ - ~ ~ " .

STy PV (3.22)
M21 = 2sin 2/3 _W_i(fll - f22) + eZIﬁfZl (W_l) - _ZIﬁflz]
Mz ‘= ZSiIn2ﬂ _(eiziﬂfll— e fr5) — <f12% - fg%)]

andv1, ¥, denotes any fixed solutions of the linear system (3.1). At this point we derive the
expressions of the gradient of the Floquet discriminant,

Lemma 3.1. The gradient oA with respect ta:, u, evaluated on the homoclinic solutiot's

is given by

(SA(U ) b 8A(U) N ie”!#

= = —¢D, | = =

su 4 Su, 4c
x expliU]+ (Mp M3, — M{M5; + (Mi; — Mzp) M21Mz2) exp[-iU]} (3.23)

SA i 1

e (7% Ep . EL2 gt

Su, 4c \2sin28 21 Yo

where M/ = M;;(L), Mij = M;j(x) (cf (3.22)), Fx = (2c)"'Lcosp + g and E, H are
functions ofF.., x andr to be given in (3.33).

(MEMZ, + (ML, — HyMyMa, — M2

Proof. We rewrite the linear operatdr™ (u, ¢) (cf (3.2)) as follows:

2
LY (u,¢) i= —cJ D, + <A + B? - ;) I (3.24)
0 1 i 0 1
J:<—1 0) A:Z(cux+u,)<1 O)

i eiu/2 0
BZZ( 0 e—iu/2>'

Let M be the fundamental matrix to the system
L™, 0)M =0 M(x=0)=1 (3.25)

where

and

evaluated on the homoclinic soluti@hor equivalently

e (a+5)
DM==Jc—-(A+—)|Mm.
¢ ¢
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Variation ofu leads to the variational equation for the variationfat fixed¢:

1 ( ( BZ>) J( 2353)
DSM==J(c—(A+=—))sM—=(5A+ M
c ¢ c ¢

(SM(X’ é" u) = _%M(x) /(;x M_l(y)] [i[&t; + C(Slfix] (tj)- é)

idu (el 0
_E( 0 _eiu>] M(y):udy

1 L i 0 1
SA(L,g,u)z—ETr[M(L)/O M (y)J[Z[Sut+65ux]<l 0)

idu (el 0
- E( 0 _eiu>:| M(y)dyi| .

An explicit calculation yields

S—A(u, o) = lTr |:M(L)DX[M_1(x)ZM(x)] + iM(L)M_l(x)SM(x):| (3.261)
Su 4 4cg

S—A(u, o) = L TrIM(L)M 1 (x)IM (x)] (3.260)
Suy 4c

where

1 0 0 el
Iz(o —1) 5:<ei" o>'

Using the fact that the elements of the mat¥xare L-periodic functions inx the expression
(3.2() takes the form

SA i . {1 0
UG ) = =T [M ) (0 _1) M+ L)} . (3.27)
An explicit representation ot/ ~:
1 _ M —My
M (x7 ;,l/l) - <—M21 M11 >

allows us to place (3.27) in the form

SA i
S = —i [(Ma2(x) Maz(x + L) — Myz(x)Mas(x + L))
+ (M12(x)Mar(x + L) — May(x)Mya(x + LY)] (3.28)

Substituting the representations (3.18) and (3.22) into (3.28) we find the expression
SA i 1 kL kL
su - 4 (23in23> [(4003(7 - Zﬂ) - Zcos(7 +2ﬂ>
— exp[i (li + Zﬁ)D V2 + <Zcos<li — 2,3)
c Y1 c
+ exp[—i ("_L _ 2,3)}) ﬂ} (3.29)
¢ V2

whereyr = (Y1, ¥»)* are the Bloch functions for the Lax pair of the sine~Gordon equation.
From (3.18) we have

kx . [ kx
Yp = 2cos| — + At Yo = =2sin| — + At
C

Cc
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wherek, 1 are evaluated on the double complex paint= 1e',

1 i
k@) =5c088 i) = 12smﬁ.

Thus,
V2 = i(— sinh 2 + i sin 2x) ﬂ = i(sinh 2+ isin2x) (3.30)
Y1 Ag Yo Ao
where
cosp sing
X = 2 ti= Tr
and

A1 = 2g(cog x coslf 1 — sin? x sint? t) Ay = 2(cog x sintf t — sin? x costft). (3.31)
Inserting (3.30), (3.31) into (3.29) leads to

A i N

where

1
E = A—[Z(cosF+ — 2cosF_)sinh 2 + sinF_ sin 2
1
+i(sinh 2 sin Fy — 2(COSF; — 2 COSF_) sin 2¢)] (3.33)
1
H = A—[—(2 sinh 2 cosF_ +sin2¢ sin 2F_) + i(sinh 2 sin F_ — 2 cosF_ sin 2x)]
2

and

cosp ) 2¢m\?
Fr=——L+ =tan " —,/1—-|— .
* 2c p p 2rc < L

The periodicity of the fundamental matri¥ allows us to rewrite the expression (3a2@&s
follows:

S—A(u, 7)) = ! Tr |:DX[M_1(x)IM(x + L)+ iM(L)M_l(x)SM(x):| . (3.34)
Su 4 4cg

Using (3.2®), we obtain an analytic expression @(U, Za):

SA SA et ., L 2 :
E(U, Cd) = _CDx E(U) + {(M12M11 + (Mzz - 1)M11M12 - Mlz) exp[lU]
t

4c
+H(ME M3, — MEMS, + (ME — ML) Moy M) exp[-iU]) (3.35)
where
expliU] = 1+ itanB cogxc cosp) sechr sinpB)
P ~ 11— itang cogxc cosp) sechr sinB)

andMl-? = M,'j(L), M,‘j = M,»j(x) (Cf (322)) O
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4. Invariant manifolds

Before addressing the existence of the homoclinic tube in section 5, here we discuss the
coordinates of locally invariant manifolds of the perturbed system (2.9).
There exists a two-dimensional subspate

X={ueH:u =0

such that the s@ll = X NH! is invariant under the flow of the perturbed system. The manifold
IT is real symplectic with a nondegenerate 2-fofy;, which arises from the restriction of
the symplectic structure tbl. Fore = 0, the system (2.5) restricted id becomes a one
degree-of-freedom completely integrable Hamiltonian system, pendulum system, for which
we know the dynamics. Furthermore, the uniform solut@n= (0, 0) is a saddle for the
reduced pendulum system which lies on the whiskered torus for the full system. On the space
H? this uniform solution becomes a singular point of the saddle-focus type.

The linearized system of the perturbed sine—Gordon equation in the neighbourhood of the
solutionO = (0, 0) takes the following form:

Yio — Pyex — y = h(y) (4.1)
with 2(y) 1= eg(y) +siny — y = 0(y®) andg(u) = a1 + a»9, V (u).
Remark 4.1. We obtain the same equation on linearizing the sine—Gordon equation (2.9) near
to the homoclinic orbit/ (x, 1),

Vi — Py —y+ K(x,t,6510)y = eF(x,t,10) + G(x, 1, y, € o) (4.2)
with
K =1—cosU = O(exp[—20]t]])
F=gU)=0(xploltl)  o:=y1-(2rc/L)?
G =¢[g(U+y)—gU)]+sinU(cosy — 1) +cosU(siny — y)

= O(exp[l-atlly>) + 0(°)
whence ag — +oo equation (4.2) leads to (4.1), siné&x, 1) — O.
Lettinge = 0, (4.1) becomes

Vi — 2y —y =0 ;11 <t <1 (4.3)
Substituting y= y(¢) cosk;x with k; = 27j/L and j an arbitrary integer, we obtain from
(4.3):

—@-chHy=0.
This shows that thgth mode grows exponentially i#(27j/L)? < 1, j = 0, 1. Now using
the even periodic boundary condition we see that our problem has two unstable directions, the

zeroth mode in the plani and forj = 1 off the subspacél, for the uniform solutior(0, 0)
which lies on the circle: = 6e'?. If c?(2rj/L)? > 1, we find an infinite number of centre

directions with frequencies; = \/c?(2rj/L)> —1,j =2,3,....

We consider a regiolr of the phase-spadé* as follows:

1 o)
V = {u eH': u= ei’s(é + (rs, +ru;) COSkjx + Zrcj COSk_,-x)

j=0 j=2

Be(—n/2,7/2),0 €[0,2n],rs,, 1y, 7c; € R}. (4.4)
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In the new variablesrs, ry, rc) the linear centre, centre-stable and centre-unstable manifolds
have the following forms:

Min={ueV  .rs=r,=0}

WS(Min) ={ueV:rg=0}

WY Miin) ={u € V 1 rs = 0}.
As we show in [11], the above representation of the linear manifolds perturb into smooth

invariant submanifolds, which far < g are locally the graphs of the functions from the
subsety into H! x P with

Y = {0, B, rs, ru, re) € HY ¢ || < 8s, |rul < 8, lI7ell

<8P e(—m/2,m]/2),80 <O < 2w — by} (4.5)
wheredy, s, Su, 8¢ are fixed positive constants and the external parameter gpace
P={u=(,a,b): ;11 <c? < 1,a1 € (0,ap), az € (0, by), ag, by € R}. (4.6)

The perturbed sine—Gordon equation is written in the new variable as follows [11]:

Fur = Agru + Pu(r, 8; €)

rs; = —Agrs+ Ps(r, 8; €) 4.7)

rep = Arc+ Pe(r, 85 €)
with A5, A% € R, Py, Ps, P; the nonlinear functionsj is the localization parameter and the
operatotd has imaginary eigenvalues. The expressions of the codimension-two locally centre-
stable and centre-unstable manifolds are given by:

VVBC(MS) = {}" € Y :rU :hu(Q, ﬁﬂrS’ Fe; &, I“L)} (4&)

mgc(MS) = {r € Y : rS:hs(e» ﬁs Ty, Fe; &, M)} (4&))
whereh" = (hy, hYy), h® = (h3, h3) are C" smooth functions witm > no. As we proved
in [11], the expression of the codimension-four centre manifeidis given by

Mé‘ = {r € Y : rLI = hCU(Q, ﬂ» rC; 87 M)» rS = hCS(Q, ﬂv rC; 8’ M)} (49)
with A = (A", h$Y), h® = (A%, h$®) C" smooth functions andt, = WS (M) N Wi (M)
and then

RO, B, res &, ) = h(0, B, h°O, B, rc; &, ), rcs €, 1)

4.10
hCS(Q, /377'05 85 M):hs(g’ ﬂvhcu(gv ﬁﬂ’c; 87 I‘L)vrc; 87 I‘L)' ( )

5. Existence of the transversal homoclinic tube

In this section, we prove the existence of the transversal homoclinic tube of the perturbed sine—
Gordon equation (2.9). The key principle which we use is to consider the smooth representation
of invariant manifolds, a Mel’'nikov argument and the implicit function theorem. Let us
consider a neighbourhod@d of the open subsét:
U={O, B, rs,ru,rc) €Y @ |rsul <o, lIrcll <61 <8¢, B e (—m/2,m/2)

89 < 0 < 2 — 85} (5.1)

and its stable and unstable boundary as follows:
3]/{5 = {(9, ﬂ, Is, I'u, rc) (S U . |r5| = 80}

5.2
U = {0, B, rs, ru,rc) € U |ru| = do}. &2
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For any fixed,, #, > 0, oW .(M,) intersects the stable boundaryzefais®, at the point
with the following coordinates:

ra=h 0, B.rs rc; &, 1)
whereh? € C" forn > ng. Since the unperturbed system admits homoclinic solutions in time,
W3(Mg) = WY(Moy), this means that

[®" 0 Wioe(Mo)] N AU® = [@" o W5 (Mo)] N aU"
we have

by 8, B, rs,1¢; 0, n) = h°(8, B, rs, 1c; 0, o).
We define the distance function between the above points in the perturbed case as
D(6o, Po. 7c.0; € ) = hi! (rs; 00, o, 705 &, 1) — hS(rc; Oo, Bo, 7c.0; €5 14). (5.3)

Following the method described in [11], we express the above function through the Mel'nikov
function as follows:

D(6o, Bos 7c.0, 80; &, i) = eM (0o, Bo; ) + O(?). (5.4)
Now define theC"—2 functiond:
1
d (0o, Bo, rc,0, 80; &, 1) 1= ED(GO, Bo, 7¢,0, S0; &, ) = M (o, Po; 1) + O(e). (5.5)
The Mel’'nikov function is given by
M (6o, Bo; 1) = / (VAU (x, 1)), G(U(x,t)))dt (5.6)

evaluated on the homoclinic orldit(x, 1), G = (0, a; + a29,V()) " and{a, b) = foL abdx.
In our case, when the Mel’'nikov function is built witt,

M3 (6o. Bo: ) 2/ {Ho, Hi}(U (x, 1)) dt

is identically zero, because from equation (2.7) we have

My=—¢t f_oo CL—Ij(U(t))dt - —s’l[H(tler;o U(t)) . H(tﬂrpooU(t))] —o. (5.7)

One can dispute thafy is the proper invariant to measure the distance between the manifolds
W3(M,) and WY(M,), since WY (M,) associated with the unstable mode (jor= 1, cf
section 4) is also a level set of the Floquet discriminant

The Mel'nikov function,M, is built with the Floquet discriminant and direct calculation
shows tha% is a combination of the gradient éf, and/ wherel = fOL u:u, dx is another
invariant of the sine—Gordon equation, which does not imply thad identically zero. When
the Mel'nikov function is identically zero, a second-order Mel'nikov calculation is needed to
measure the splitting distance betwé&f(M,) and W'(M,), [10].

We can rewrite the Mel'nikov functioM as:

© rLgA Vv
M (6o, Bo; M)=/ / . (U(x,1) [aﬁaz—(U(x,t))} dx dr (5.8)
—00 J0 U au

where the expression f@ué is givenin (3.32). The Mel'nikov integral is convergent. Because
the Hamiltonian perturbatiofl; is an exponentially decreasing expression evaluated on the
homoclinic solutionU (x, t), satisfying condition (3.17), from (3.32) we obtain

A

< ce’! C > 0.
Su,




Sine—Gordon equation with Hamiltonian perturbation 6421

SettingM = 0 in (5.8), we obtain an algebraic equation for the parameters
a; —axe =0 (5.9)

where

00 L SA -1
G =60,p) = {f / —(U)—(U)dxdt(/ / —(U)dxdt) }
—o00 J0 5”1

We denote the surface defined by (5.9)Hy.
Eg 1 Bo = B(6o; ¢).
We state the main result in the following theorem.
Theorem 5.1. There exista regiovi = (0, 27) x P for the parameters and a positive constant
g0 > 0, such that for anye| < gg and(0, u) € R, there exists a codimension-four transversal

homoclinic tube in the open sgiof phase-spadd® asymptotic to the codimension-four centre
manifold M,.

Proof. There exists a regioR of the surfaceE, such that

ﬁ(ﬂo’ Bo; w) # 0

and|oM/dBo| < 1,1 >0
For anypo = (o, fo. fio) € R

0
?d(Qo, 0,0 0, fig) = ?M(Qo, Bo. 00, f10) # O (5.10)
and
oM .
ﬁ(pO) <

By the implicit function theorem there is a neighbourhd®af (6o, fig) and a uniquec”—2
function

Bo = B(bo, re0; &, 1)
defined inR such that

B(60,0; 0, 1) = fo
and

d (6o, B(®o, reo; &, 1), rc0; €, 1) = 0
Sinced is aC”"~? smooth function by (5.10), we obtain

0 A
——d (00, B(Bo, rco; €, ), Fe,0; &, 1) # 0O
9Bo
and

ad .
—| < m, m>0 for (6o, rco; &, 1) € R.
dBo

Then, W2 .(M.) andW2.(M,) intersect transversely at the neighbourhéadet

V= LJﬁoER,]é
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then there exists a uniqu& —2(V, R) function

Bo = B(6o, rc.0; €, 1) (5.11)
in such a way

B(6o, 0; 0, u) = Bo(6o; 1)
andd (6o, B(0o, rc,0; & 1), c,0; €, 1) = 0. .

Relation (5.11) defines a codimension-one submanifeld of M,. The coordinate
expression of the transversal intersectibrcodimension-four oWs(M,) and W!(M,) is
given by

ry = h®(6o, B(Oo, rc0: € 1), 7c,05 €, I4)
rs = h®(0o, B(6o, r¢,0; €, 1), Ic,0; €, 14) (5.12)

Bo = B(Bo, re,0; &, 1)
whereh®™ = (hg", h{"), h® = (hg®, h$). Define the homoclinic tub&,e as follows:

Htube = tER@;OT. (5.13)
Then Hype is the codimension-four transversal homoclinic tube asymptotic o M,. O

6. Conclusions

We have shown the existence of homoclinic tubes for the near-integrable infinite-dimensional
Hamiltonian system. The sine—Gordon equation which we chose to study is a nontrivial
integrable equation and admits homoclinic solutions in time. We found an analytic expression
for these solutions using Hirota’s method. We investigated the existence of homoclinic tubes
through the Mel'nikov analysis and an argument of the implicit function theorem. Since the
system under study is a near-integrable Hamiltonian PDE we are also interested in studying
the non-elliptic KAM tori and chaotic dynamics inside the homoclinic tube.
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